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Predicting Soil Salt Content Over Partially Vegetated
Surfaces Using Non-Negative Matrix Factorization

Ya Liu, Xian-Zhang Pan, Rong-Jie Shi, Yan-Li Li, Chang-Kun Wang, and Zhi-Ting Li

Abstract—Remote sensing has been widely applied to map soil
salinity in the last few decades. However, a notable decrease in the
accuracy of soil salt content (SSC) predictions occurred when the
soil surfaces were partially vegetated. To minimize the influence
of partial vegetation cover on spectral reflectance, we applied a
spectral separation method, non-negative matrix factorization
(NMF), to extract soil spectral information from a controlled
field experiment with three varying factors [vegetation coverage,
soil moisture content (SMC), and SSC]. The method was applied
without prior knowledge of, or restrictions on the mixed and
source spectra. Soil samples and spectral reflectance collected
on three periods were used to determine the effectiveness of
NMF-extracted soil spectra with partial least squares regression
(PLSR). The results indicated that SSC can be predicted by bare
soil spectra. NMF effectively separated soil spectra from the
observed spectra, and the SSC was successfully predicted from
the extracted soil spectra within a wide range of vegetation cover
(0%–64.7%) within defined moisture levels (<0.15 g g−1 by
weight). The approach proposed in this study will improve the
prediction accuracy of SSC for partially vegetated surfaces and
will expand the application of remote sensing.

Index Terms—Non-negative matrix factorization (NMF),
partially vegetated surfaces, remote sensing, soil moisture content
(SMC), soil salt content (SSC).

ABBREVIATIONS

SSC soil salt content.
NMF non-negative matrix factorization.
PLSR partial least squares regression.
NDVI normalized difference vegetation index.
RSU residual spectral unmixing.
SMC soil moisture content.
BSS blind source separation.
SA spectral angle.
EPO external parameter orthogonalization.
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I. INTRODUCTION

S OIL salinization is one of the most common forms of land
degradation and environmental hazard [1]. In recent years,

the primary and secondary soil salinization of the world contin-
ues to increase, resulting in turning fertile fields into degraded
land even deserts. For sustainable development of ecologi-
cal environment, monitoring the extent, magnitude, and spatial
distribution of salt-affected soil are essential.

Image spectroscopy is a powerful tool to estimate the spa-
tial distribution of soil salinity [2]–[5]. However, the application
of spectroscopy techniques in monitoring soil properties is rel-
atively restricted, particularly in areas where the soil surface
is covered with vegetation [6], [7]. When using spectroscopy,
vegetation seriously decreased the accuracy of soil organic car-
bon and clay contents prediction in partially vegetated fields
[6], [7], and vegetation cover was also identified as one of
the most important constraints on the use of remote sensing
data to map soil salinity [1]. A number of strategies have been
attempted, with different degrees of success, to account for veg-
etation effects and improve spectroscopic calibrations in order
to predict soil properties in vegetated areas. The approaches
dealt with soil salinity prediction in the vegetated area using
remote sensing technique could be summarized as three kinds,
they were as follows.

The first one was the traditional solution which was to mask
out the areas with high vegetation cover, using vegetation
indices with certain threshold values [8]. Therefore, imaging
spectroscopy was often restricted to bare soil surfaces due to
inadequate spectral information on soil salinity in vegetated
area.

The second one was using vegetation indices. In a few stud-
ies, soil salinity was estimated with vegetation reflectance, and
many of these studies preferred to use vegetation indices. The
NDVI was sensitive to salinity, particularly in croplands [9].
Other vegetation indices such as the photochemical reflectance
index (PRI) [10], the red edge position (REP) index, the
chlorophyll-normalized difference index (Chl NDI) [10], [11],
the modified NDVI [4], and the soil-adjusted vegetation index
(SAVI) [12] were highly correlated with SSCs. However, the
general applicability and transferability of these vegetation
indices were too limited. Zhang et al. found that most vege-
tation indices, except SAVI, had weak relationships with soil
salinity (with an average R2 of 0.28) and some (e.g., PRI
and REP) were not sensitive to all species of vegetation [12].
Zhang et al. [13] and Douaoui et al. [14] found that NDVI
was a poor predictor of soil salinity [13], [14]. Therefore, even
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though some vegetation indices worked well in some cases,
the indices may not always be good indicators because they
were not specifically constructed for direct determination of soil
salinity. Accordingly, a new method to estimate soil salinity in
partially vegetated areas must be developed.

The third one was spectral unmixing. Recently, soil spec-
tral information was extracted from mixed spectra with spectral
unmixing techniques, to improve the accuracy of soil proper-
ties estimations. Ghosh et al. [15] used linear spectral unmixing
analysis to map salt-affected soils with Hyperion hyperspectral
remote sensing data (EO-1), and classified not quantified slight,
moderate and highly salt-affected soils. Bartholomeus et al. [6]
first proposed the new method of RSU to filter out the influ-
ence of maize from the mixed spectral signal, and they used
the residual spectra to quantify soil organic carbon content [6].
The RSU method effectively eliminated the influence of vege-
tation from the mixed spectral reflectance, but it was necessary
to know in advance the portions of soil and vegetation. The soil
reflectance was then calculated using (1), and was used to pre-
dict soil properties as usual. In this case, both the efficiency and
feasibility were restricted, since the fraction of vegetation and
soil should be known in advance

Rsoil = Rmix − (fmaize ×Rmaize)

fsoil
(1)

where Rmix is the reflectance of the mixed spectra, Rmaize is
the reflectance of the maize endmember, fmaize and fsoil are
the fraction of maize and soil, respectively.

Ouerghemmi et al. [7] applied BSS techniques to extract soil
spectra from mixed hyperspectral spectra, and predicted clay
contents using the extracted soil spectra. The biggest advantage
of BSS was no need of any prior knowledge about the source
spectra and how they mixed [7]. However, Ouerghemmi et al.
[7] used independent component analysis (ICA) technique to
implement BSS. The biggest disadvantages of ICA were that
the source signals were required to be independent of each
other, and some of the results were in negative domains, which
required further processing, thus limited the wide application of
ICA, because most source signals were correlative in practical
application.

As another technique of the BSS family, NMF which was not
limited to the independent source signals overcame the disad-
vantages of ICA, and extracted source spectra with all positive
values. For its wide applicability, NMF was previously applied
widely in image analyses [16]–[18], and was also proposed to
compress spectral data [19]. We explore the NMF technique
to extract the soil spectrum from mixed hyperspectral data
containing both vegetation and soil.

However, in addition to vegetation, many other factors
influence soil reflectance, such as soil moisture, soil color,
and surface roughness. Of these factors, soil moisture is the
most prominent one because it cannot be avoided and is
variable in the field. Soil moisture affected the entire visible
and near infrared reflectance (vis–NIR) domain from 400
to 2400 nm [20], [21] and seriously reduced the prediction
accuracy of some soil properties [20], [22], [23]. Specific
to soil salinity estimation, the effect of soil moisture was
greater, as SSC changed greatly with the changing SMC [24].

Fig. 1. Geographic location of the experimental site.

Thus, soil moisture effects would be considered in the SSC
estimation in this study.

In this paper, according to the approach proposed by
Ouerghemmi et al. [7] which consisted in a “double-extraction”
technique: 1) extraction of soil spectra from mixed spectra and
2) extraction of soil property contents from the extracted soil
spectra [7], we used NMF to extract the soil spectra from the
mixed spectra contained both vegetation and soil spectra. Then
to predict SSC, PLSR models established by the extracted
soil spectra were used. Therefore, the objectives of this study
were 1) to further identify the effects of vegetation on spectral
estimates of SSC; 2) to apply NMF to alleviate vegetation
effects to improve the accuracy of estimates of SSC; and 3) to
testify the effects of soil moisture in the SSC prediction after
NMF process.

II. MATERIALS AND METHODS

A. Experimental Site Description

In order to objectively testify the ability of NMF, a wide
SSC and vegetation coverage ranges should be required.
Therefore, we artificially added salt to the soil and planted
barley in various seeding densities. Additionally, we reg-
ularly collected spectra, took photos, and sampled soil
of each plot, during the growth process. Thus, we could
obtain more variation in SSC and vegetation coverage. This
study was conducted on the Huanghai Raw Seed Growing
Farm (32◦ ∼ 38′−40′ N, 120◦ ∼ 52′−54′ E) in Dongtai city,
Jiangsu Province, China (Fig. 1), with the Yellow Sea to the
east. The farm is approximately 5 km to the coastline of China
Yellow Sea, and the topography is flat with an average elevation
of 1.0–1.5 m. The climate is subtropical monsoon with four dif-
ferent seasons and with a mean annual temperature of 14.7 ◦C
and an annual precipitation of 1042 mm. The field implemented
our experiment was 220 m2 (22 m× 10 m) in area, and located
in the western part of the farm. The soil is an Aquent of the
U.S. Soil Taxonomy classification and is a silt loam soil accord-
ing to the U.S.D.A. texture classification. The parent material is
marine sediment [25]. The SSC was about 0.58 g kg−1.
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B. Planting, Sampling, and Spectra Collecting

The experimental site was divided into 50 plots (5 lines×
10 columns corresponding to 5 SSC levels× 10 sowing densi-
ties), each with size of 1.5 m× 1 m. Since the SSC in the
study field was relatively uniform, we added 0, 1.17, 1.95,
2.73, and 3.12 kg NaCl to each plot of 5 lines, respectively,
to form a wider range of SSC levels on November 7, 2013.
Three days later after thoroughly mixing of salt with soil, we
sowed barley at 10 different densities (21, 36, 51, 66, 81,
96, 111, 126, 141, and 156 g seeds per plot) on each line of
plots (Fig. 1). The barley grew under local farm management
practices. Then, we synchronously observed the vegetation cov-
erage and reflectance spectra of each plot, and sampled soils on
December 6, 2013, December 30, 2013, and January 21, 2014
before the soil surface was fully covered with barley. Since the
SSC and vegetation coverage for each plot could change tem-
porally, a wider range of vegetation coverage, and variational
SSC and SMC were obtained.

Before sampling soil, digital photos of the each plot were
taken using a digital camera (EOS 10D, Canon Inc., Tokyo,
Japan) positioned 1 m above the top of the vegetation for
determining vegetation coverage later. Spectral reflectance of
each plot was measured simultaneously with an ASD spec-
troradiometer (Fieldspec 3 Hi-Res, PANalytical, B.V, Boulder,
CO, USA, formerly Analytical Spectral Devices) that covered
the 350–2500 nm wavelength regions at 1 nm intervals. The
aperture angle of the fore optic was 25◦, and the spectral mea-
surements were taken from the nadir at a height of 1.3 m and
were centered in the middle of each plot, resulting in a 57-cm
diameter field of view. Spectral measurements were performed
under clear skies between 12:00 A.M. and 2:00 P.M. A white
panel (1× 1 m; Anhui Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences) was used to calibrate and opti-
mize the instrument before each measurement. Ten spectra of
each plot were taken.

After photos and spectra collection, in each plot, five sub-
samples were collected to a depth of 5 cm using an auger and
were then mixed.

C. Soil and Spectral Data Preparation

A portion of each sample was air-dried, ground to pass
through a 2-mm mesh and then analyzed for electrical conduc-
tivity (EC). The 1:5 soil and water suspensions were used to
measure the EC with a conductivity meter conventionally. The
EC was transformed into SSC (g kg−1) using (2) [26]

y = 3.257x− 0.357 (2)

where y is the SSC (g kg−1) and x is the EC 1:5 value
(ms cm−1).

The other portion was used to determine the moisture content
by oven drying. The SMC (g g−1) was calculated as the ratio of
water content (weight minus oven-dried weight) to oven-dried
weight of each sample.

The vegetation coverage was extracted using the G–R thresh-
olding method [27]. The green channel minus the red channel
of a photo, then a threshold was set, pixels with G–R value

Fig. 2. Reflectance spectra of partially vegetated soil surfaces with different
vegetation coverage.

higher than the threshold were sorted as vegetation and the rest
as soil. Vegetation coverage can be obtained by calculating the
proportion of vegetation.

Ten spectra taken in one plot were averaged and the aver-
aged spectrum was identified as spectrum of each plot. In this
study, the spectra were subjected to standard normal variate
(SNV) preprocessing [28] to reduce the multiplicative interfer-
ences of scatter and particle size. Because the reflectance data
in the extreme wavelength ranges from 350 to 399 nm and from
2401 to 2500 nm were significantly affected by noise, and the
ranges from 1351 to 1450 nm and from 1801 to 1950 nm were
affected by moisture in the air, the reflectance data from those
bands were not included in our study. The reflectance spectra
of partially vegetated soil surfaces with different coverage were
shown in Fig. 2.

A total of 150 spectra (50 plots× 3 periods) and their corre-
sponding values of SSC, SMC, and vegetation coverage were
obtained. Due to mistakes in measurements, three spectra were
not used in the later analyses. The total original spectral data
were defined as Data set A, which then was split into two sub-
sets, according to a method which had been widely applied to
minimize the soil moisture effects in many studies [23], [29],
[30]. Data set A1 with lower SMC and Data set A2 with higher
SMC, separated by the threshold value of SMC of 0.15 g g−1,
as 0.15 was the median value of SMC in our study. The descrip-
tive statistics of the SSC, SMC of the soil samples and the
vegetation coverage of the three data sets were given in Table I.

D. Concept of BSS

BSS was a technique to recover source signals from their
mixtures. The term “blind” has two meanings: 1) what the
sources are is unknown and 2) how they are mixed is unknown.
The mathematical model can be written as follows:

X = AS+R (3)

where X was the observed (mixed) signal matrix, A was the
mixing matrix, S was the source signal matrix, and R was the
residual matrix.
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TABLE I
STATISTICS OF SMC, VEGETATION COVERAGE, AND SSC FOR THE THREE DATA SETS USED IN THIS STUDY

The aim of BSS was to solve (3), when both A and S
were unknown. One of the most common techniques to solve
BSS was ICA. With the premise that the data must meet some
hypothesis, thus ICA can work. First, the source signals must
be independent to each other; second, the number of observed
signals must be more than the number of source signals; third,
there were no equipment noise. In the ICA process, there were
three parameters to be determined, according to users’ specific
intention: learning rate, the number of iterations, and optimiza-
tion function. If these parameters were not chosen properly, the
results would not be satisfactory.

E. Non-Negative Matrix Factorization

NMF was another technique of BSS, so it has all advantages
of BSS, simultaneously overcomes some disadvantages of ICA.
However, its application in spectral unmixing was not seen, we
initially used NMF to separate soil and vegetation spectra in
this study.

There were several NMF algorithms. In this study, we used
the one initially proposed by Lee and Seung [31], with the
constraint of non-negativity, allowed only additive and not
subtractive combinations of original data.

The spectral reflectance database was an n×m matrix
X , each column of which contained n non-negative spectral
reflectance values of one of the m spectra. The NMF con-
structed approximate factorizations of the form X ≈WH [31].
The W and H matrices were purely non-negative, with the
non-negativity constraints, and the dimensions of W and H
were n× p and p×m, respectively. The rank p was gener-
ally chosen by p < (nm)/(n+m), and in our case, p was
the number of spectral reflectance sources determined from the
composition of mixed spectra.

To obtain the approximate W and H , a cost function based
on Euclidean distance was defined with (4) [18], [32]

E(W,H) = ‖X −WH‖2 =
∑

nm

(Xnm − (WH)nm)
2

(4)

where E(W,H) (size n×m) was the residual or noise matrix.
The process to acquire the approximate W and H was to
minimize the E (W,H). For NMF, there were various algo-
rithms, and in this submission, we used an algorithm based
on multiplicative update rules for W and H . The Euclidean

distance was no increasing under the updated rules and was
calculated with (5)

Ham ←Ham
(W TX)am

(W TWH)am
Wna ←Wna

(XHT )na

(WHH)na

(5)

where a was an integer variable (a = 1, 2, . . . , p). The
Euclidean distance no longer changed under these updates if
and only if W and H were at a stationary point of the distance
[32]. Thus, the approximate W and H were obtained.

Spectra of 10 simulated vegetation coverage were calcu-
lated for each mixed (observed) spectrum, and then were used
as input matrix X (size 1751× 10) on which NMF was per-
formed with the number of source spectra p equal to 2. After
a certain times of updating (we chose 100 times), the out-
put matrix W (size 1751× 2) was obtained, which represented
spectrum of soil and vegetation. Then the soil spectrum was dis-
criminated through comparing the SA between each of the two
extracted spectrum and the averaged spectrum of bare soil. The
spectrum with a smaller SA value was identified as that of bare
soil.

The NMF was conducted with MATLAB 7.9.0 (MathWorks
Inc., Natick, MA, USA). The 147 spectra of Data set A after
NMF processing were Data set B, which was also split into two
subsets (Data set B1 and Data set B2), as in Section II-C, so the
number of spectra in Data set B1 and B2 was the same with Data
set A1 and A2.

F. Partial Least Squares Regression

PLSR with leave one-out cross validation was applied to
establish a correlation between the extracted soil spectral val-
ues (independent variable) and SSCs (dependent variable).
The PLSR model was implemented with Unscrambler X10.3
software (Computer-Aided Modeling, Trondheim, Norway).

To quantify the accuracy of the models, the coefficient of
determination in the calibration (R2

c), the coefficient of determi-
nation in the cross validation (R2

cv), the root-mean-square error
of the calibration (RMSEc), the root-mean-square error of the
cross validation (RMSEcv), the ratio of the standard deviation
to the root-mean-square error of the calibration (RPDc), and
the ratio of the standard deviation to the root-mean-square error
of the cross validation (RPDcv) were calculated. According to
Viscarra Rossel et al., six classes of models can be identified
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Fig. 3. Correlation between measured SSC and predicted SSC using PLSR
calibrated with the bare soil spectra (vegetation cover <5% and SMC <
0.15 g g−1).

based on RPD values: RPD > 2.5 indicates excellent model,
2.0 < RPD < 2.5 indicates very good model, 1.8 < RPD <
2.0 indicates good model which predictions are possible, 1.4 <
RPD < 1.8 indicates fair model which may be used for assess-
ment, 1.0 < RPD < 1.4 indicates poor model which only high
and low values are distinguishable, and RPD < 1.0 indicates
very poor model which was not recommended to use [33].

III. RESULTS AND ANALYSIS

A. Prediction of SSC Over Bare Soil

Thirty-five spectra under low vegetation coverage (lower
than 5%) and low SMC (lower than 0.15 g g−1) were selected
to verify their ability in predicting SSC. The results were shown
in Fig. 3. The predictions were acceptable, with R2

c = 0.67
(N = 35), RMSEc = 2.54 g kg−1, RPDc = 1.76, R2

cv = 0.59
(N = 35), RMSEcv = 2.99 g kg−1 and RPDcv = 1.50.

The results indicated that SSC could be predicted over the
bare soil samples selected for this study, which confirmed our
previous work in the laboratory that SSC could be predicted
from the spectral reflectance of air-dried soil samples [26].

B. Influence of Partial Vegetation Cover on the Estimation of
SSC

The PLSR model was established using the original (mixed)
spectra (Data set A), and the results showed that the accuracy
of the SSC estimates was not satisfactory with vegetation cov-
erage varying from 0% to 64.70%, and R2

c = 0.45 (N = 147),
RMSEc = 4.11 g kg−1, RPDc = 1.36, R2

cv = 0.41 (N = 147),
RMSEcv = 4.28 g kg−1, and RPDcv = 1.30 (Fig. 4). Thus,
according to these parameters, the model developed from orig-
inal spectra with different vegetation coverage did not perform
well in estimating the SSC, identifying a common problem
in practical application. Based on these results, removal of
the vegetation effects before regression would be required to
construct an accurate model.

Fig. 4. Correlation between measured SSC and predicted SSC using PLSR
calibrated with the original spectra (Data set A).

C. NMF of the Mixed Spectra

In order to demonstrate the changes in spectral behaviors
visually before and after NMF, three plots with vegetation cov-
erage of 12.9%, 28.4%, and 41.9% were chosen as examples
(Fig. 5). The reflectance spectra of bare soil and the three vege-
tated plots were shown in Fig. 5(a), while the extracted spectra
after NMF corresponding to the original (mixed) spectra were
shown in Fig. 5(b)–(d). The NMF could successfully separate
each of the original spectra into two distinguishing spectra, one
of which was very similar to soil spectrum, while the other was
similar to vegetation spectrum. The results also demonstrated
that the effectiveness of NMF decreased with the increasing
vegetation coverage, as was shown in Fig. 5(d), the vegetation
features, such as the red edge, remained more explicitly in both
of the extracted spectra.

Fig. 6 showed all the SA values between the extracted spec-
tra (vegetation and soil) and the averaged bare soil spectrum.
It was clear that the SA values clustered into two groups, the
higher one was identified as vegetation, and the lower one as
soil, which confirmed the ability of NMF in separating mixed
spectra. The SA values of the lower group were less than 10◦

(red line in Fig. 6) with vegetation coverage lower than approx-
imately 30%. However, when vegetation coverage was more
than 30%, the SA of extracted soil spectra became larger which
meant that the extracted spectra were more different from the
bare soil spectra. It also indicated that the ability of NMF in
unmixing the mixed spectra weakened when it was applied to
samples with higher vegetation coverage.

D. Effectiveness of the NMF-Extracted Soil Spectra for
Estimation of SSC

To evaluate the effectiveness of the extracted soil spectra,
PLSR models were established with Data set B to predict the
SSC, and the leave one-out cross validation was performed on
the data set to validate the model. The scatter plot of measured
SSC against predicted SSC was shown in Fig. 7. Most of the
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Fig. 5. (a) Original spectra with different vegetation coverage. (b–d) Separated spectra of the three original spectra using NMF.

Fig. 6. SA values between extracted spectra and the averaged bare soil spec-
trum. The red line was used to indicate SA = 10◦, and the red dashed line was
used to indicate vegetation coverage = 30%.

scatter points still deviated from the 1:1 line, and the prediction
accuracy was not greatly improved, with R2

c = 0.49 (N = 147),
RMSEc = 3.96 g kg−1, RPDc = 1.41, R2

cv = 0.34 (N = 147),
RMSEcv = 4.53 g kg−1, and RPDcv = 1.23. These results were
contrary to our initial expectation that the prediction accuracy
would be greatly improved if the effects of vegetation coverage
were removed from the mixed spectra.

We further divided the total data (Data set B) into two sub-
sets (Data sets B1 and B2), according to SMC. The median
SMC of 0.15 g g−1 was chosen as the threshold, as SMCs in
our study were in the range of 0.09–0.20 g g−1. Then, PLSR
models were established using the two subsets, Data sets B1

Fig. 7. Correlation between measured SSC and predicted SSC using PLSR
calibrated with total NMF-extracted soil spectra (Data set B).

and B2. The predicted versus measured plots for the PLSR
calibration and the cross validation estimates for the differ-
ent data sets were shown in Fig. 8. The scatter points of SSC
were close to the 1:1 line, with R2

c = 0.91 (N = 75), RMSEc =
1.51 g kg−1, RPDc = 3.84, R2

cv = 0.63 (N = 75), RMSEcv =
3.38 g kg−1, and RPDcv = 1.72. The prediction accuracy was
greatly improved compared with using the total data to establish
the model. When SMCs were greater than 0.15 g g−1, the accu-
racy of prediction was reduced rapidly, with R2

c = 0.54 (N =
72), RMSEc = 3.59 g kg−1, RPDc = 1.33, R2

cv = 0.37 (N =
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Fig. 8. Correlation between measured SSC and predicted SSC using PLSR calibrated with different data sets. (a) NMF-extracted soil spectra with SMC less than
0.15 g g−1 (Data set B1). (b) NMF-extracted soil spectra with SMC greater than 0.15 g g−1 (Data set B2).

Fig. 9. Correlation between measured SSC and predicted SSC using PLSR calibrated with different data sets. (a) Original soil spectra with SMC less than
0.15 g g−1 (Data set A1). (b) Original soil spectra with SMC greater than 0.15 g g−1 (Data set A2).

72), RMSEcv = 4.32 g kg−1, and RPDcv = 1.11 [Fig. 8(b)].
For NMF processed data, the accuracy of predicting SSC was
higher when soil moisture was less than 0.15 g g−1.

To compare the effects of SMC before and after NMF,
we also divided the total original spectra data set (Data set
A) into two subsets (Data sets A1 and A2) with the same
rules that were applied to Data set B. Although the SMC was
less than 0.15 g g−1, the results were not satisfactory [R2

c =
0.45 (N = 75), RMSEc = 4.23 g kg−1, RPDc = 1.37, R2

cv =
0.33 (N = 75), RMSEcv = 4.72 g kg−1, and RPDcv = 1.23],
and the scatter points of SSC seriously deviated from the 1:1
line [Fig. 9(a)]. The results were even worse when the SMC

was more than 0.15 g g−1 [R2
c = 0.49 (N = 72), RMSEc =

3.77 g kg−1, RPDc = 1.41, R2
cv = 0.45 (N = 72), RMSEcv =

4.03 g kg−1, and RPDcv = 1.32], as shown in Fig. 9(b).
In order to demonstrate the effects of NMF, we compared

the results derived from different analytical methods (including
ICA and NMF) and no preprocess methods (original spectra).
The comparisons were shown in Table II. For samples with
all SMC, predictions of SSC with the NMF-, ICA-, and RSU-
transferred spectra were nearly equal and worse than those with
original spectra. For samples with low SMC, prediction of SSC
with NMF-transferred spectra was better than other methods
in both calibration and cross validation. For samples with high
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TABLE II
STATISTICS FOR PREDICTIONS OF SSC USING A PLSR WITH SPECTRA AFTER DIFFERENT ANALYTICAL METHODS

Note: All samples were samples with all levels of SMC; Low SMC was samples with SMC lower than
0.15 g g−1; High SMC was samples with SMC higher than 0.15 g g−1.

SMC, the prediction of SSC derived from original and RSU
spectra were better than the results derived from NMF and ICA.

IV. DISCUSSION

A. Ability of NMF Compared With Other Methods

The results derived from the mixed spectra (Fig. 4) showed
that the RPD values were less than 1.4, which indicated a
poor model, especially the prediction for some samples with
high salt content was worse. Because these samples usually
had very low vegetation coverage whose spectra were very
different from those with vegetated ones, after implementa-
tion with PLSR, the predictions were not good enough. The
results further confirmed the conclusion of Bartholomeus et al.
[6] and Ouerghemmi et al. [7] that vegetation cover seriously
influenced the estimation of soil properties [6], [7]. Therefore,
clearly, an effective method to separate the soil spectra from the
mixed spectra to broaden the application of imaging spectrom-
etry is required.

Only a few previous studies examined the separation of
mixed spectral signals. The occurred RSU method was effective
to obtain soil spectra, but with the prerequisite that the propor-
tions of soil and vegetation should be known in advance [6].
While BSS can work without any prior knowledge of the mixed
spectra, Ouerghemmi et al. [7] successfully implemented BSS
using ICA technique to extract soil spectra from mixed spectra
for clay prediction [7]. However, ICA demanded that the source
spectral signals were independent from each other. Therefore,
ICA may not apply to all cases. Furthermore, three parameters
for ICA, all of which influence the results, should be optimized:
the learning rate, the optimization function, and the number of
iterations. The NMF applied in our study, however, has restric-
tions on neither the mixed nor the source spectral signals, and
only requires the determination of the maximum number of iter-
ations (100, in this study). Thus, the use of NMF may have
wider applications, and the results of NMF may be more stable
than those obtained with the ICA technique.

We also compared the performance of NMF, ICA, and RSU
to account for the differences between mixed and extracted
soil spectra to enable the use of spectral unmixing methods
to predict properties of soil. Without considering SMC effects,
the results of all the three methods were approximately the
same (Table II), but both ICA and RSU have some limita-
tions in source spectra or mixed spectra, while NMF does not.
Additionally, the NMF method largely improved the prediction
accuracy of samples with low soil moisture.

As noted in Section III-C, when vegetation coverage was
approximately more than 30%, the SA values between the
extracted soil spectra and the averaged bare soil spectrum
were higher than 10◦ (Fig. 6), and indicated that NMF could
not completely separate soil spectra from mixed spectra (a
conclusion reached from the SA values). Thus, the threshold
of vegetation coverage from which the effectiveness of NMF
weakened was approximately 30%, and we wanted to clarify
that threshold of 30% for the vegetation coverage was an
approximate value, just from the SA values in our study, not
an absolute value for other cases or areas, because we judge it
a little arbitrarily in our study area. When vegetation coverage
was higher, even though vegetation effects were not removed
completely by NMF, it did not mean that NMF did not work.
Compared with the mixed spectra, the extracted soil spectra
contained more useful information for the prediction of SSC
with improved prediction accuracy, as confirmed in Fig. 8(a).
The range of vegetation coverage in this experiment was from
0% to 64.7%, all spectra after NMF were used to predict SSCs,
and the result was acceptable as shown in Fig. 8.

The effectiveness of NMF weakened when vegetation cov-
erage was high, which was understandable because it cannot
capture enough soil information from the mixed spectra. Thus,
it was not unexpected that when the soil surface was fully
covered by vegetation, the NMF did not work. As we know,
currently, none of the methods of spectra separation can be
applied to all levels of vegetation coverage, particularly to high
vegetation coverage. Ouerghemmi et al. [7] simulated mix-
tures that varied from 15% to 30% and separated the spectra
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Fig. 10. Measured SMC versus predicted SMC using different data sets. (a) NMF-extracted soil spectra with SMC less than 0.15 g g−1 (Data set B1). (b) NMF-
extracted soil spectra with SMC greater than 0.15 g g−1 (Data set B2). (c) Original soil spectra with SMC less than 0.15 g g−1 (Data set A1). (d) Original soil
spectra with SMC greater than 0.15 g g−1 (Data set A2).

using the ICA method, but proposed that a minimum bare soil
surface was required for the isolation of soil spectra [7]. In
our case, NMF was highly effective until vegetation cover-
age reached 30%. When vegetation coverage exceeded 30%,
the NMF method was unable to separate soil and vegetation
completely [Fig. 5(d)], but the shape of extracted soil spectra
was more similar to the bare soil compared with the origi-
nal mixed spectra. Thus, though the vegetation effect was not
totally removed, large parts were removed. Additionally, in
most salt-affected areas, the vegetation cover typically is not
high because salts seriously restrict the growth of plants [34].

The majority of our samples have a rather low vegetation
cover, because the germination rates in the plots with high
SSC were low and the vegetation coverage measured in the
early period of growth was also very low, both the two rea-
sons resulted in the majority of vegetation coverage was low.
Even though most vegetation coverage was low, our sam-
ples still contained vegetation coverage ranged from 0% to

64.7%, and we thought the range of vegetation coverage was
enough to prove the effectiveness of our method. Comparing
the PLSR results derived from the spectra before and after
NMF (covered the same vegetation coverage), the results could
prove the effectiveness of our methods. Additionally, for saline
area, vegetation coverage was usually not very high for grain
crops.

For the original (mixed) spectra, the major factor to influ-
ence the accuracy of SSC prediction was vegetation cover
because the soil surface was partially covered by vegetation and
thus the dominating factor to influence the spectral reflectance.
However, for extracted soil spectra by NMF, ICA, and RSU, as
vegetation effects were alleviated and the spectra were viewed
as bare soil spectra, soil moisture played an important role in
determining the spectral reflectance and the accuracy of the pre-
diction. When the SMC was low, the effects of moisture were
not strong enough to be detected; however, with an increase
in the SMC, the effects were more significant and eventually



5314 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 11, NOVEMBER 2015

decreased the accuracy of predictions of SSC. That was the
reason why when SMC was high, all the spectral unmixing
methods cannot improve the prediction accuracy.

B. Effects of SMC on NMF-Extracted Spectra

Theoretically, the extracted soil spectra should more accu-
rately predict SSC than the original mixed spectra, according
to previous studies [3], [35], [36]. However, soil moisture
played an important role in decreasing the accuracy of soil salt
estimation based on soil spectra.

In the recent decades, many researchers have examined the
estimations of soil properties with various SMC conditions
[25], [29], [30], [37], [38], and all demonstrated that the pre-
diction accuracy dropped when the SMC was high, which
was in accordance with our results. Nearly all those studies
were conducted in the laboratory with artificial moisture con-
tents obtained by the rewetting of soils, and the maximum
SMC was set at approximately 0.20 and 0.25 g g−1. In our
study, the SMCs used were from the field, and the maximum
SMC was also approximately 0.20 g g−1. The results from this
study demonstrated clearly that for partially vegetated surfaces,
when SMC was below 0.15 g g−1, the SSC can be predicted
reasonably well in situ, after NMF preprocessing.

Further analyses were performed to support the above con-
clusion. We calibrated the SMC and spectra (original and NMF-
extracted soil spectra) using PLSR. As shown in Fig. 10(a) and
(c), for both the original and NMF spectra, when the SMCs
were less than 0.15 g g−1, the SMC was not predicted accu-
rately, thus indicating that there was poor correlation between
SMC and spectral values. When the SMCs were greater than
0.15 g g−1, the SMC could not be predicted from original
spectra [Fig. 10(d)] but were accurately predicted from NMF-
extracted soil spectra, as shown in Fig. 10(b). These results
provided further evidence for the conclusion that the origi-
nal spectra were not affected by SMC over the entire range
from 0.09 to 0.20 g g−1, but that the NMF spectra were seri-
ously affected by SMC if SMCs were higher than 0.15 g g−1.

In our study area, the field moisture capacity was approx-
imately 0.20 g g−1 [39], and thus 0.15 g g−1 was near the
field moisture capacity. Generally, the SMC did not exceed
0.15 g g−1 in the field unless special circumstances occurred,
such as rainy weather or irrigation. In our study area, the pro-
posed method was appropriate. For higher SMC, we did not
attempt to address the problem in this study, but further research
to eliminate the effects of moisture using some other effec-
tive algorithms such as the EPO will be explored [40]. Many
previous studies have demonstrated that SMC effects on the
estimation of soil properties could be removed [37], [41], [42],
so we foresee that NMF has great potential to improve the
prediction accuracy of SSC over partially vegetated areas.

The studies conducted by Bartholomeus et al. [6] and
Ouerghemmi et al. [7] used soil samples and spectra collected
on one date to avoid the effects of variable SMC, whereas in our
study, soil samples and spectra were collected on three different
dates, which was more realistic and reflected actual conditions
[6], [7]. Therefore, the inevitable variable SMCs should be
considered.

C. Critical Points in NMF Application and Perspective

According to previous studies [17], [19], [43], the number of
mixed spectra m must be equal to or greater than the number of
source spectra p because the ultimate purpose of NMF was the
compression of the original data set.

This study was performed on a field experiment, so vegeta-
tion type (barley) and soil texture (silt loam) were not variable,
although both might influence results. In the future, more
vegetation types should be tested to determine if NMF can be
broadly applied. According to our previous study [26], the soils
in the 50× 20 km region were all silt loams without a differ-
ence in texture, and we plan to verify the effectiveness of NMF
in areas with more heterogeneous soils in further studies.

V. CONCLUSION

The NMF effectively alleviated the effects of vegetation on
the spectra and estimation of SSC, and broadened the use
of spectroscopy which was limited to bare soil previously.
Additionally, soil moisture was an important factor to be con-
sidered for NMF-extracted soil spectra. The use of NMF would
facilitate the mapping of partially vegetated areas and would
lead to the improvement of digital soil mapping, particularly
where vegetation conditions vary with time or among differ-
ent areas. In the future, we will test this method for removing
the effects of partial vegetation cover on the estimation of SSC
using remote sensing images.
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