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Electrical energy storage system (EESS) plays a crucial role to handle the intermittency and randomness
of renewable energy, such that the power reliability can be significantly enhanced. This paper attempts to
design an adaptive fractional-order sliding-mode control (AFOSMC) approach for a typical EESS tech-
nology, e.g., superconducting magnetic energy storage (SMES) systems, to improve its dynamical re-
sponses against varirous operation conditions. At first, a sliding-mode state and perturbation observer
(SMSPO) is applied to estimate the combined effect of unmodelled dynamics, parameter uncertainties,
and external disturbances of SMES systems. Then, a fractional-order sliding-mode control (FOSMC) is
utilized to completely compensate the perturbation estimat, such that a noticeable robustness can be
achieved. Moreover, only the dq-axis currents need to be measured while the perturbation estimate
replaces its upper bound, thus AFOSMC be easily achieved with appropriate control costs. For the pur-
pose of validating its control performance, a distribution network involving SMES system with renewable
energy penetration is studied. The control performance of conventional proportional-integral-derivative
(PID) control, interconnection and damping assignment passivity-based control (IDA-PBC), sliding-mode
control (SMC), and fractional-order sliding-mode control (FOSMC) is compared to that of AFOSMC under
three scenarios. Simulation results show that AFOSMC can greatly outperform other approaches in both
tracking speed and overall costs, e.g., its active power error is only 63.55%, 83.44%, 69.60%, and 76.67% of
that of PID control, IDA-PBC, SMC, and FOSMC under reactive and active power supply, while the required
control costs is only 76.69%, 91.28%, 83.50, and 86.76% to the above three controllers. Finally, a hardware-
in-the-loop (HIL) test based on dSpace is implemented to verify its practicability under various scenarios.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

However, large-scale penetration of renewable energy has caused
plenty of severe problems, such as power balance, frequency

The development and utilization of renewable energy have
become an urgent agenda for the sake of environment protection
around the globe [1]. Generally speaking, the modern power sys-
tem development has gradually evolved from smart grid to energy
internet, and moving ahead to internet of things [2]. Under such
paradigm, numerous applications of various renewable energy, i.e.,
wind, wave, solar, tidal, geothermal, hydro [3—5], have been
popularly and widely investigated and applied worldwide [6].
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modulation, and operation stability and security due to their
inherent nature of randomness and intermittence [7,8].
Nowadays, electric energy storage systems (EESS) have played a
crucial role in modern energy supply chain [9]. Such great signifi-
cance of EESS thanks to their prominent merits of power system
stability enhancement, auxiliary control of renewable energy,
generation efficiency improvement, fossil energy conservation, as
well as greenhouse gas emission reduction. There are an enormous
variety of EESS while the main difference is the scale of time and
size, which can be mainly categorized into energy-type storage
system and power-type storage systems. The former mainly con-
sists of pumped hydroelectric energy storage (PHES), fuel cell
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Nomenclature

Variables

Eq d-axis voltage of AC equivalent node

Eq g-axis voltage of AC equivalent node

15} electrical frequency of AC equivalent node

ia d-axis current flowing across the transformer
iq g-axis current flowing across the transformer
Va d-axis voltage at PWM-CSC terminal

Vq g-axis voltage at PWM-CSC terminal

idc DC current flowing across superconducting coil
my d-axis modulation indicatrix

mq g-axis modulation indicatrix

P, active power

Qac reactive power

AFOSMC parameters

Gi» ¢i Aci (i = 1,2) controller gains
o, kyj (i = 1,2; j = 1,2,3) observer gains

€o the thickness layer boundary of the observer
€c the thickness layer boundary of controller
al a2 fractional differential order

SMES system parameters

C capacitor used as low-pass filter

Lgc inductance of superconducting coil device
Ly inductance of transformer

Ry resistance of transformer

stated rated apparent power of SMES system

Abbreviations

SMES superconductor magnetics energy storage

SMC sliding-mode control

FOSMC fractional-order SMC

AFOSMC adaptive fractional-order SMC

PID proportional-integral-derivative

SMSPO  sliding-mode state and perturbation observer

PWM-CSC pulse-width modulated current source converter

HIL hardware-in-the-loop

IDA-PBC interconnection and damping assignment passivity-
based control

IAE integral of absolute error

EESS electric energy storage systems
SCES super-capacitor energy storage
FWES super-capacitor energy storage
HESS hybrid energy storage system

TES thermal energy system

CAES compressed air energy system

PHES pumped hydroelectric energy storage

PCU power converter unit

PCC point of common coupling

PCH port-controlled Hamiltonian

MPC model predictive control

PO perturbation observer

PERSFC perturbation estimation based robust state feedback
control

DFIG doubly-fed induction generator

PoFoPID perturbation observer based fractional-order PID

energy storage, as well as compressed air energy storage (CAES)
and thermal energy storage (TES) with minimal environmental
impact, while super-capacitor energy storage (SCES), super-
conducting magnetic energy storage (SMES), and flywheel energy
storage (FWES) belong to the latter [10]. Moreover, hybrid energy
storage system (HESS) composed of SCES and SMES could meet the
needs of high storage capacity and rapid response [11].

Among aforementioned techniques, SMES systems have the
merit of high conversion efficiency due to superconductors, e.g.,
low energy loss, low cost and high current-carrying capacity [12]. In
addition, it is capable of rapidly and independently regulating
active power/reactive power in four quadrants to effectively ach-
ieve power transfer control resulted from high-frequency power
electronic switching devices [ 13]. A pulse-width modulated current
source converter (PWM-CSC) has been widely used in SMES sys-
tems which can reduce the harmonic distortion and number of
electronic components [14].

In SMES systems, the energy stored in magnet can be discharged
via power converter unit (PCU) to power grid, such that a smooth
and satisfactory power flow can be obtained at the point of com-
mon coupling (PCC). As a consequence, an important task of SMES
systems operation is the design of proper controller for PCU. Con-
ventional linear control scheme, e.g., proportional-integral-
derivative (PID) control has been largely adopted because of its
simple structure and high implementation reliability [15]. Never-
theless, SMES system is a nonlinear system with strong coupling, in
which the control parameters of PID are selected through one-point
linearization. Hence, PID control is not capable of providing a
globally consistent control performance in different operations. To
handle such thorny difficulty, many nonlinear control strategies
have been developed. Lin, X.D [16]. proposed the port-controlled

Hamiltonian (PCH) models based energy-shaping mechanism of
SMES systems to achieve a fast power commands response.
Moreover, in order to improve dynamical responses under various
operation conditions, a fuzzy logic control was employed for SMES
system by Wang, S. [17]. Besides, Trilochan, P [18]. developed a
nonlinear dynamic evolution control for SMES system, which can
significantly suppress power harmonics. Moreover, for the sake of
realizing a globally consistent control performance, Shi, ] [19].
adopted a feedback linearization control to remove nonlinearities
of SMES system. Meanwhile, an interconnection and damping
assignment passivity-based control (IDA-PBC) was designed by
Montoya, O.D. [20], which can enhance the transient response
capability of SMES system. Furthermore, Wan, Y [21]. reported an
extended backstepping control to improve the dynamic responses
of SMES system. However, these approaches are mainly based on a
full state measurement and precise system modelling, which
therefore lacks of robustness to uncertainties in modelling. For the
sake of improving the robustness, model predictive control (MPC)
was devised which estimates uncertain parameters of SMES system
[22]. Meanwhile, the robustness can be improved by sliding-mode
control (SMC) [23].

Basically, SMES system often operates under various un-
certainties resulted from stochastic feature of renewable energy
while an optimal control performance is of great importance as the
investment of SMES system is still quite high. However, the afore-
mentioned nonlinear control strategies generally require a accurate
SMES model, e.g., all/many states and parameters must be
measured [16,19—21], which hinders their practical applications.
Besides, the selection of proper fuzzy rule or evolution mechanism
used in advanced approaches [17,18] remain to be unresolved.
Meanwhile, other robust controllers normally result in over-
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conservative control performance which inevitably causes unnec-
essary additional costs [22,23]. As a result, an adaptive controller
which does not need accurate system model and only require few
state and parameter measurement, as well as achieves more
optimal control performance need to be developed for the practical
and optimal SMES system applications.

For the sake of efficiently improving the robustness and dy-
namic responses of SMES system, a new adaptive fractional-order
sliding-mode control (AFOSMC) strategy is proposed in this work,
which incorporates perturbation observer (PO) gor robustness
enhancement and fractional-order sliding-mode control (FOSMC)
framework for dynamic response improvement. AFOSMC is a very
powerful tool in handling various uncertainties which has been
applied to photovoltaic inverters [24] and DC-DC converters used in
HESS with electric vehicles [25]. The state-of-the-art contribution
of this study can be outlined as follows:

e Compared with linear PID controller [15], the nonlinearities of
SMES system are fully compensated by AFOSMC, such that a
global consistent control performance can be achieved under
various operation conditions;

Compared with nonlinear controllers [16,19—21], no accurate
SMES system model is required by AFOSMC. In particular, only
dg-axis currents iy and ig need to be measured without any
parameter information. Thus, AFOSMC is easy to be imple-
mented in practice

e Compared with advanced controllers [17,18], AFOSMC employs a
sliding-mode perturbation and state observer (SMPSO) [26—28]
to estimate the aggregated effect of nonlinearities and various
uncertainties in terms of a perturbation, which is completely
compensated online. Hence, AFOSMC does not need any
training/learning rules

Compared with robust controllers [22,23], AFOSMC utilizes the
real-time estimate of perturbation rather than its upper bound
for the purpose of compensation. As a consequence, the
inherent drawbacks of over-conservativeness of robust con-
trollers can be effectively avoided, such that a more optimal
control design can be achieved to reduce the investment costs of
SMES system.

Lastly, the objective of this study is summarized by the following
four aspects:

(a) Globally consistent control: AFOSMC aims to achieve a glob-
ally consistent control for SMES systems in the presence of
significant time-varying operation condition due to sto-
chastic renewable energy integration, such that AFOSMC
installed SMES systems can operate more smoothly and
consistently;

(b) Robust control with reasonable costs: AFOSMC attempts to
enhance the robustness of SMES systems against various
uncertainties, e.g., unknown parameters and unmodelled
dynamics, via the use of SMSPO. Meanwhile, more resonable
costs can be realized by real-time perturbation compensa-
tion, such that AFOSMC installed SMES systems can operate
more reliably and economically;

(c) Improved dynamical responses: AFOSMC adopts fractional-
order sliding-mode surface into the controller design to
considerably improve the dynamical responses of SMES
systems, such that AFOSMC installed SMES systems can
rapidly respond to considerable operation condition
variations;

(d) Easy practical implementation: AFOSMC merely requires the
measurement of dq-axis currents without any other further
information of SMES system states/parameters, such that

AFOSMC installed SMES systems can be easily implemented
in practice.

2. SMES systems modelling

As schematically demonstrated in Fig. 1, SMES system is mainly
composed of three parts: (a) Low-temperature/High-temperature
superconducting (LTS/HTS) coil magnet; (b) Cryogenic refriger-
ator; and (c) Helium/Nitrogen liquid. A superconducting coil has
been utilized in SMES system to connect power grid via a power
modulation system [29,30]. It can be regarded as a constant current
source that could store energy in a long period, as well as a backup
device to input electric power into power grid in presence of
external disturbances.

Fig. 2 illustrates three major configurations of SMES system [31],
in which a PWM-CSC is preferable since superconducting coil owns
an intrinsic current feature, i.e., energy can be stored by utilizing
magnetic field [32]. Hence, PWM-CSC based SMES system will be
studied in this paper. Besides, Kirchhoff's laws have been applied
(see Fig. 3) in PWM-CSC'’s AC side to determine the active power
[19].

Mathematical model of SMES systems connected with distri-
bution networks is expressed as [20,32].

d. . .

LTald = — Rrpig — u)Lqu +vq — Eq (1)
d. . ;

LTalq = — Rqu + (L)LTld +vq — Eq (2)
d . .

Cavd = —lg— (L)CUq + Mglyc 3)
d . .

C qa= —la+ 0Cvq + Mqigc (4)

1. d. ) .

iLscalﬁc = — Eq4iq — Eqiq (5)

where each symbol can be referred to Nomenclature.

As shown in Eq. (5), it is worth noting that the dynamical
behaviour of current iy can be approximated by ignoring com-
mutation and transformer losses because such power losses are
lower than 5% of the entire transfer power [20]. Basically, reactive
power Q¢ and active power P, are calculated by

Pac = Eqig + Eqiq (6)

Liquid Helium/Nitrogen
+ -

— H _ LTS/HTS

Y

| S
Cryogenic

refrigrrator Helium
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Fig. 1. General components of SMES systems.
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Fig. 2. Three typical structures of SMES system. (a) Line commutated converter (LCC),
(b) Voltage source converter (VSC) and DC/DC converters, (c) Pulse-width-modulated
current source converters (PWM-CSC).

id , iq
—>

Power grid

Ed > Eq

" SMES o=
g I Vd,Vq

Fig. 3. Schematic diagram for SMES system based on PWM-CSC connected to AC po-
wer grid.

3. Adaptive fractional-order sliding-mode control
3.1. SMSPO design

The standard form of uncertain nonlinear systems is described
by

X =Ax + B(a(x) + b(x)u + d(t))

{ ) (8)
y=x1

where x = [x1,X2, ~~~,xn]Te<%” denotes the state variable
vector; ye.7 and u .7 represent the output of system and control
input, respectively; a(x): #" — .2 and b(x): %" — .% denote several
unknown smooth functions; and d(t): .#*—.% means an external
disturbance varies with time, respectively. Furthermore, state ma-
trix A and control matrix B can be expressed as

0 1 0---0 0
0o O 1---0 0
A= oo e ,B=|: (9)
0 0 0---1 0
0o O 0---0 1

nxn nx1

The perturbation of system (8) can be described by [26—28].

Y(x,u,t)=a(x)+ (b(x) — bg)u + d(t) (10)

where by denotes a user-defined constant control gain.
Furthermore, the last state x, in system (8) is written as

Xn = a(x) + (b(x) — bo)u+d(t) + bou = Y(x, u, t) (11)

Now, the perturbation can be represented via defining an
extended state, e.g., x,.1 = V(x, u, t). Hence, system (8) can be
further expressed as

y=x
X1 =X
: (12)
Xp = Xn+1 + bou
Xni1 =¥(+)

The new state vector can be represented as
Xe = [X1,X2, ---,xn,an}T and two assumptions are proposed as
follows [26—28]:

A.1 bp must strictly satisfy the inequality |b(x) /by — 1] < 0<1,
in which 6 represents a positive constant.

A.2 The perturbation y/(x,u,t) : #" x # x #*— % and its first-
order derivative Y(x, u, t): #" x # x %t zare limited as
W(x,u,t)| < vy, |[¥(x,u,t)| < v, with ¥0,0,0 =0,and $0,0,0 =0,
where positive constants vy; and vy, denote the limits of perturba-
tion and its first-order derivative, respectively.

Denote X = x — X as the estimation error of x while X denotes the
estimate of x, and x* is the reference of x, respectively. Besides, the
perturbation and states of extended system (10) can be estimated
as follows [26—28]:

5(.\1 = 5(\2 + a1X1 + kq tanh(fq,eo)
B ~ . - (13)
Xn = Y(+) + anXy + kntanh(xy, eo) + bou

U(+) = tpy1X1 + knyqtanh(xy, eo)

Loei =124 1,

while sliding surface observer gains k; = C};A{;kh i =1,2,---,n
Moreover, continuous and smooth tanh(x;, &,) function (e
represents the thickness layer bound of the observer) replaces
discontinuous sgn(x;) function used in SMC, thus the effect of
chattering can be considerably alleviated, as follows [33]:

where Luenberger observer gains ¢; = Ct

tanh(x, €) :% (14)
ei4e:

3.2. Fractional-order sliding-mode controller design

The basic operator ,Df of fractional-order integral can be
designed as [34].

23
%, a>0
1, a=0
oDt = (15)

t
J(dr)’“, a<0
a

where a and t represent the lower and upper boundaries while a e
% denotes the operation order.
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Besides, Riemann-Liouville (RL) definition is utilized with
Gamma function I'(-), yields

n t
DEO= 1 o | (€ (16)

I'(n —a) dt" Je- )l

where n represents the first integer which is greater than or equal
toa,eg, n—1<a<n.

The estimated fractional-order PD“ sliding surface for system (8)
is described by

§FO = i [Pi (?i

i=1

—yi ) D (R -5 (17)

where positive constant A. represents the gain of fractional-order
PD* sliding surface.

Besides, §F0 is set to be 0, yields

D*(Ri—yi V) = —mi(Ri-vy ") (18)

According to Refs. [35], one has C = —p; and |arg(eig(C))| = .
When O<a<2, |arg(eig(C))|>am/2 always satisfy. Hence, dy-
namics of fractional-order PD“ sliding surface (17) tends to be
gradually stable.

3.3. Overall AFOSMC design

Therefore, AFOSMC for system (8) is described by

u=p [y —¥(+) — Sro — gtanh(Sro, ec)] (19)

where ¢ and ¢ represent the gains of sliding-mode control.
Furthermore, e represents the thickness layer bound of controller.

Remark 1. The bound of perturbation and its derivative described
in assumption A.2 can be verified as follows:

Firstly, the equivalent dynamics of perturbation estimation error
is expressed as [28].

Xy = —k—2)~€2 +)~{3
k]
k3~ ~
7EX2 + X4
: (20)

iy = kg +X
n = kl 2 n

. Koot
Xpp1 = — "” Xp+Y(+)

Then, substitute control law (19) into perturbation (10), together
with the last equation of system (20), one can obtain the pertur-
bation and its derivative by

% K1 — Sko — gtanh(Sso, ec)]

(21)

wz%wxwd( 1+

Y=d(x)+d(t)+bx)u .

[b(x) — by
b
. BY d ~
— ¥ —¢Sp0 — ¢am”h(5Fo7 Sc)}

= d(x)+d(t) + b(x)u

[b (%) = bol knﬂ
bo k

Based on assumption A.1, yields

1y~ Sro - o getanh Sro.e|  (22)

V1 < 35100+ IO + 3o [ia] + <8Srol + ] (23)

W1 < a(0)] + 1d(e)] + Boul + 0[

. A d ~
1+ 650l + 6 gy tanh Bro, )| (24)
Lastly, consider the perturbation is a smooth function,
assumption A.2 can be proved. Note that the system parameters
and disturbances are then synthesized into the perturbation, which
is estimated by SMSPO (13).

4. AFOSMC design for SMES systems
4.1. Character analysis of SMES system
The dynamics of DC current ig. is controlled by the dynamical

response of iy and iq. The energy storage variable is defined as
z(t) = Lscigc, gives

t

2 - 2L JS(T)dT
0

S(r) = Eqig + Eqiq

z(t) = (25)

where zg represents the state of energy storage variable z at initial
stage and s(7) means the transferred active power between AC and
DC side.

Fig. 4 demonstrates the behaviour of the stored energy in
superconducting coil, in which there exists two important points,
denoted by A and C. Particularly, the minimum and maximum ad-
missible energy of SMES system can be represented by them. In
general, SMES system operates between point A and point C, e.g.,
denoted by point B, which active power reference can either be
positive or negative (denoted by P). Here, the references of reactive
and active power are represented as P;. and Qj, respectively. Based
on Eq. (6) and Eq. (7), the references of dq-axis currents i:’j and i; are
written as

ig = (EZL Ez) (EaPycf +EqQsc) (26)

. Lt > . .
Ig= (EaPicB — EqQqc) (27)
q 9 ac c

<Ed +Ej

where ( represents the operation coefficient of SMES system which
can be further written as
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B
4 P(t) |
| |
>
Fig. 4. Behaviour of the stored energy in the superconducting coil.
_J 1 Zyin £2 < Zmax
b= { 0, otherwise (28)
4.2. Controller design
For SMES system (1)—(7), define state vector as X =
(Xl .,X2,X3,X4,X5)T = (id7 iQ7 Vd,Vq; idC)T’ OUtpLIt y = (yl sy2)T =

(id,iq)T, and control input u = (uq,u)! = (my, mq)T. respectively.

Then, the state equation of SMES system (1)—(7) can be obtained as

X=f(x)+gX)u (29)
where
Rt X3 Eqg
—— X — WXy +—=— 5
I 2T Ir 0 0
Ry 4 Eq
fl ——Xy + WX +——E 0 0
f 1 X5
f(X): B|= ——=X1 — WXy gx) = el 0
fa ) X
5
fS *EXZ + WX3 0 f
—EdX] - EqX2 00
Lscxs
(30)

Differentiate output y until control input u explicitly appeared,
gives

Hence, system (31) is able to be concisely expressed in the form
of matrix, as follows

yi]_ h1(><)} B {uq 32
AR Rl (32)
where
R, 1)\. 2wRr., Rr w. 2w
h1(x)<l%—w —CLT>ld+LquJr[%(Ed—vd)JrLTEq—LTVq
,ngd
T
(33)
R2 5, 1 2wRr. Ry w. 2w
hz(X)<E _C_LT>q_Tld+E(Eq Vq)—EEcH-L Vg
_le'—q
T
(34)
with
& o
Bo=| ' (35)
lde.
0 CLy

In particular, the control of dg-axis currents iy and iq is inherent
coupled. Moreover, for the sake of guaranteeing the linearization of
input-output introduced above to be effective, control gain matrix
B(x) requires to be nonsingular throughout all operation conditions,
eg.,

i2
det[B(x)] =

ng% #0 (36)

As superconducting coil current iy is always different from zero
( igc#0 means that superconducting coil keeps operating, i.e., al-
ways under control), such that requirement (36) can always be
guaranteed.

Define perturbations ¥4(-) and y,(.) for SMES system (32),
gives

)] =[] @080 1] (37)

Furthermore, constant control gain matrix By can be expressed
as

_|bin O
Bo=| " | (38)

where bq; and by, are the user-defined constant control gains.

1

. (R¥ 5, 1)\. 2wRr, Rp w 2w . 1.
y]—< ) _C_LT 1d+ LT lq+E(Ed—Ud)+EEq—EUq—EEd+C—LTlded

E_

. RZ 1). 2wRr. R w 2w
y2<T wz——>lq—£ld+—T(Eq—vq)——Ed-‘r—v
T

2 CLr
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Choose tracking error e = [ey, ex]T = lig-ig, iq—i:‘]T, differentiate e
until input u explicitly appear, gives

*

[2] - W;E%] w[ﬂ - H (39)

lq

Define z11 = iy, zZ12 = Z13, then a third-order SMSPO is utilized by

. Zn =Zip + oz + kygtanh(Zyg, eo)
Z12 = ¥1(+) + @12Z11 + kiptanh(zyq, e0) + by1uy (40)
¥1(+) = ay3211 + kystanh(zy, &)

where kq1, k12, k13, @11, @12, and «q3 all represent positive observer
gains.

Meanwhile, define z»1 = ig, Z22 = Z21, then a third-order SMSPO is
utilized by

. 231 =22 + a2y + kagtanh(Zy, eo)
Zyp = Y, (+) + @221 + kpptanh(zyy, o) + bastiy (41)
Ya(+) = ap3Zoy + kystanh(Zyy, €0)

where observer gains kji, ka2, k23, a21, a2z, and aps3, all denote
positive observer gains.

The estimated fractional-order PD* sliding surface of tracking
error dynamics (39) is selected as

FFm} _ D! (ig — ig) + Act (ia — ig) (42)

Sro2] | D@ Gq - i:l) + e Gq - i:l)

where a1 and «2 are the fractional differential orders, while A.; and
Ao mean the gains of fractional-order PD* sliding surface,
respectively.

Lastly, AFOSMC law is given by

{md} B! [’S - %1(-) — ¢1Sro1 — ¢1tanh(Sgo1, ec) 3

m : . N
a iq = ¥2(+) — 62Sro2 — ¢2tanh(Sgoz, ec)

where ¢1, ¢, ¢1, and ¢, are positive control gains.

Remark 2. Modelling errors usually emerge from unknown SMES
system parameters and unmodelled SMES dynamics, as well as
external disturbances resulted from stochastic renewable energy
penetration, which are all aggregated into perturbation and then
estimated by SMSPO. The next step is to compensate the estimate
online via AFOSMC, while the control structure of AFOSMC for
PWM-CSC based SMES system is demonstrated in Fig. 5.

Remark 3. Note that perturbation observer (PO) based control
design includes a large family of various control strategies that
incorporated with PO. After the perturbation is estimated by PO,
different controller can be employed to compensate the perturba-
tion estimate. Thus far, authors have developed other controllers
into this framework, e.g., perturbation observer based sliding-
mode control (POSMC) for doubly-fed induction generator (DFIG)
[26], perturbation estimation based robust state feedback control
(PERSFC) for DFIG [27], as well as perturbation observer based
fractional-order PID (PoFoPID) for photovoltaic inverters [36].

5. Case studies

Fig. 6 demonstrates the topology of a PWM-CSC based SMES
system connected to a distribution network associated with
renewable energy. Meanwhile, renewable energy is synthesized
into distribution network at Bus 1. Moreover, Table 1 illustrates
system parameters while Table 2 demonstrates the parameters of
each controller, which structure is given in Appendix. Four case
studies are implemented for the sake of verifying and comparing

pwm-csc Labedq]|
Ry igy Iq, Power grid
Lst
] AC
fse —SMES A0 Ey E,
SVPWM C
=

q-axis current controller

Cid *1-4o{ tanh(-) W
A2 s bl g
d/dt]—] d/dt

Fig. 5. Overall AFOSMC control structure for PWM-CSC based SMES system.



8 B. Yang et al. / Energy 202 (2020) 117753

Renewable energy penetration

Riin

R

Fig. 6. The topology of distribution network interconnected with PWM-CSC based
SMES system and renewable energy.

Table 1
The parameters of SMES system and distribution network [20].

Parameter Value Unit Parameter Value Unit Parameter Value Unit

Lsis], Idisz 25 mH Rsisl. RsisZ 5 mQ R2 1 Q
Lix 1.5 mH  Rq» 10 mQ C 160 uF
Ly 25 mH Ry 125 mQ G 01 uF
Ry 1 Q G 0.1 uF s 440 \
G 01  uF oyl 440 VI 75 H
Rsc 001 Q ig}iﬂ 20 A g 120 A
jtated 100 A gmed 375 KkVA Load 30 kw

the feasibility and merits of AFOSMC to that of traditional PID
control [15], IDA-PBC [20], SMC [50], and FOSMC [37], respectively.

5.1. Active power and reactive power supply

This case aims to verify that SMES system is capable of sup-
porting the active and reactive power when system operates under
various circumstances. Here, power references keep changing and
the major task is to accurately track them. Besides, the responses of
system acquired via various controllers are demonstrated in Fig. 7.
From which one can readily observe that AFOSMC can regulate both
active and reactive power at the fastest rate without any overshoot.

5.2. System restoration capability under power grid fault

Faults occurred in power grid are very common that are usually
result ed from extreme or severe weather, equipment defects, or
improper management and maintenance, which may lead to an
instantaneous power unbalance. Hence, control system requires to
restore the perturbed system quickly and effectively [38,39]. As-
sume that between Bus 2 and infinite bus, a three-phase short-
circuit fault happens on one transmission line at t = 0.5 s. Moreover,
at t = 0.6 s, the faulty line is disconnected, and switched on and

restore normal power supply when the automatic reclosing devices
clear the fault [40].

Fig. 8 demonstrates restoration performance acquired by
different controllers when fault occurs. One can easily find that
AFOSMC is capable of efficiently and significantly alleviating power
oscillations resulted from the fault and ensuring the unstable sys-
tem to be restored to normal operation condition at the highest
rate. Besides, the perturbation estimation performance of SMSPO
during the power grid fault period is also monitored. One can
observe that perturbations can be efficiently estimated in roughly
250 ms.

5.3. Power support under random renewable energy penetration

This scenario investigates the power support performance un-
der random renewable energy penetration [41,42]. A total capacity
of 3 kW renewable energy (a mixed 1.5 kW wind energy and 1.5 kW
solar energy) is applied. Note that active power production is
actually time-varying due to inherent randomness of renewable
energy resources [43]. Hence, it requires SMES system to rapidly
compensate the malignant oscillations of active power resulted
from the change of wind speed and solar irradiation variations, and
to offer reactive power required by induction machines [44] to
guarantee the power factor of Bus 1. Fig. 9 shows that undesirable
active/reactive power oscillations could be significantly reduced by
AFOSMC, hence the system stability can be considerably enhanced.

5.4. Robustness with system parameter uncertainties

A range of plant-model mismatches of the equivalent resistance
Req and inductance Leq with +10% difference compared with their
normal value have been undertaken. Particularly, it is noteworthy
that such parameter uncertainties could be resulted from aging,
overheating, as well as inaccurate measurement. Then, at infinite
bus, a 30% voltage drop caused by power grid faults is simulated
lasting round 100 ms, while peak value of active power |P,| is
recorded. Fig. 10 shows the change of |P,¢| by PID control, IDA-PBC,
SMC, FOSMC, and AFOSMC is 40.3%, 79.7%, 27.6%, 25.4%, and 15.6%,
respectively. Consequently, AFOSMC possesses the greatest
robustness among all controllers under system parameter
uncertainties.

5.5. Comparative studies

For the purpose of quantitatively evaluating the control per-
formance, integral of absolute error (IAE) [45—48] obtained under
three cases are given in Table 3. One can find that IAE indices of
AFOSMC are always the lowest under all circumstances, which
demonstrates that its control performance is the best. Particularly,
its IAEp,c is only 63.55%, 83.44%, 69.60%, and 76.67% to that of PID
control, IDA-PBC, SMC, and FOSMC in terms of power supply,
respectively. Meanwhile, its IAEq,c is just 55.29%, 73.90%, 58.78%,
and 66.01% to that of PID control, IDA-PBC, SMC, and FOSMC in

Table 2
The parameters of each controller.
controllers parameters
PID Kpy = 100 Kiy = 250 Kp; =15 Kpp =75 K = 200 Kpy =10
IDA-PBC Ry =45 Ry =45 R3 =35 ki = ky =3 ks =2 kg =2
SMC ¢ =25 ¢ =21 £0=0.2 ¢y =20 A =25 Ao =20 ec =02
FOSMC ¢1=20 ¢=15 ¢1 =25 ¢ =20 A =25 A2 =20 al =0.8 a2 =05 ec =02
AFOSMC app =30 a1p = 300 ay3 = 1000 ap1 =30 ayy =300 ap3 = 100 b11 = 500 by, = 600 ec =02
¢ =15 =10 ¢1 =20 ¢y =15 A =20 A =15 al =0.8 a2 =05 g0 =02
kll =20 k]z = 600 k13 = 6000 kz] =20 ](22 = 600 k23 = 6000
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Fig. 9. Results acquired under random renewable energy penetration.

terms of system restoration, respectively.

Lastly, Table 4 compares the overall control costs [49—52] of
each controller. It is obvious that the required costs of AFOSMC is
the lowest under all circumstances. Besides, its control costs under
power support uwith random renewable energy penetration are
only 87.49%, 96.08%, 93.16%, and 94.37% to that of PID control, IDA-
PBC, SMC, and FOSMC, respectively. Lastly, simulation results show
that AFOSMC can greatly outperform other approaches in both
tracking speed and overall costs, e.g., its active power error is only
63.55%, 83.44%, 69.60%, and 76.67% of that of PID control, IDA-PBC,
SMC, and FOSMC under reactive and active power supply, while the
required control costs is only 76.69%, 91.28%, 83.50, and 86.76% to
the above three controllers.

Remark 4. Note that the control performance evaluation criteria
include four aspects: (a) tracking error, (b) control costs, (c)
robustness and (d) structure complexity, e.g., numbers of states/
parameters that need to be measured. One can see from Table 3
(tracking error), Table 4 (control costs), Fig. 10 (robustness), Egs.
(40)-(43) and Appendix (structure complexity) that AFOSMC owns
the best control performance among all controllers.

Remark 5. Other state-of-the-art PID control, called optimal

passive fractional-order PID (OPFoPID) control [53], has also been
compared to further evaluate the control performance of AFOSMC.
It has been found that AFOSMC outperforms OPFoPID control in all
the three cases, e.g., its IAEpyc and IAEq,c obtained under active
power and reactive power supply are just 92.64% and 97.27% to that
of OPFoPID control. More importantly, AFOSMC only requires the
measurement of dqg-axis currents while OPFoPID control requires
many SMES system states/parameters to be measured. Besides,
AFOSMC owns much higher robustness and less control costs than
that of OPFoPID control. As a result, AFOSMC shows superior con-
trol performance in all evaluation criteria described in Remark 4 in
comparison to that of OPFoPID control.

6. HIL test

This section aims to further investigate the implementation
feasibility of AFOSMC. An HIL experiment based on dSpace platform
is implemented while its configuration and platform are depicted
in Fig. 11 and Fig. 12, respectively. Besides, SMES system (1)—(7) has
been embedded on DS1006 platform while the sampling frequency
is f = 100 kHz. Furthermore, AFOSMC (40)—(43) has been
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Fig. 10. Robustness results obtained under a 30% voltage drop.

implemented on DS1104 platform whose sampling frequency is
fc =5 kHz.

Fig. 13 depicts the results of simulation and HIL under reactive
and active power supply. It can be easily found that their results are
quite similar. Note that there exist some consistent power oscilla-
tions with a magnitude of 3.5 kW in active power and 2.5 kVar in
reactive power in HIL experiment.

Then, simulation and HIL results acquired by system restoration
is illustrated in Fig. 14. Clearly, their responses are quite close. It can

R e e L e " easured
| d-axis current i..l Signals
—:—» A/D —| SMES System DA} ‘
——+> A/D —>| Eq. (1)-(7) D/A L
1 q-axis current i, :
[}
iDS1006 Board _ _ _ _ _ _ __.__ __._ i

r
H Quadrature modulation
mdex m,

|
: D/A
(
r

. Direct modulation
Control | index 1,

Inputs i —

Fig. 11. The configuration of HIL test.

AFOSMC
Eq. (50)-(53)

be seen that some insignificant power oscillations appear in HIL
experiment, with a magnitude of 0.023 kW in active power and
0.014 kVar in reactive power at their steady state.

In Fig. 15, power support under random renewable energy
penetration of simulation and HIL test is compared, which have
very similar curves. One can observe that a 0.35 kW active power
oscillation and 0.04 kVar reactive power oscillation emerge in HIL
test.

Note that the difference between simulation and HIL is mainly
caused by the followings:

e Time delay: It often leads to a degradation of the desired control
performance, e.g., simulation response is faster than that of HIL
by around 0.02 s in Fig. 13;

Table 3
IAE indices (in p.u.) of each controller acquired under five conditions.
Conditions IAE Indices PID IDA-PBC SMC FOSMC AFOSMC
Active power and reactive power supply 1AEpac 0.2735 0.2083 0.2497 0.2267 0.1738
IAEqQac 0.2941 0.2114 0.2638 0.2346 0.1851
System restoration capability under power grid fault IAEp,c 0.1758 0.1303 0.1609 0.1485 0.1069
IAEQac 0.1823 0.1364 0.1715 0.1527 0.1008
Power support under wind energy penetration 1AEp,¢ 0.3764 0.3196 0.3518 0.3342 0.2645
IAEqQac 0.3925 0.3328 0.3706 0.3529 0.2819
Power support under solar energy penetration IAEpac 0.3057 0.2409 0.2736 0.2497 0.1986
IAEQac 0.3211 0.2628 0.2923 0.2708 0.2118
Power support under mixed wind/solar energy penetration 1AEp,¢ 0.4579 0.3536 0.3918 0.3729 0.3122
IAEQac 0.4728 0.3657 0.4022 0.3833 0.3246
Table 4
Overall control costs (in p.u.) of each controller acquired under five conditions.
Conditions PID IDA-PBC SMC FOSMC AFOSMC
Active power and reactive power supply 0.3947 0.3316 0.3625 0.3489 0.3027
System restoration under power grid fault 0.2628 0.2275 0.2507 0.2356 0.1964
Power support under wind energy penetration 0.7653 0.7198 0.7524 0.7348 0.6861
Power support under solar energy penetration 0.6278 0.5719 0.6093 0.5877 0.5388
Power support under mixed wind/solar energy penetration 0.8579 0.7812 0.8057 0.7954 0.7506
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Fig. 12. The hardware schematic of HIL experiment.

e Measurement disturbance: It usually results in consistent oscil-
lations in HIL test, as discussed above;

o Discretization of HIL test and sampling holding: It generally brings
in an additional amount of errors against that of continuous
control used in simulation.

Lastly, it is worth noting that the application of SMES technology
is still quite expensive at the moment, particularly at the real power
grid level investigated in this study. As a result, this work can only
validate the control performance of AFOSMC by HIL test due to
limited resources. In fact, HIL test is a common and highly accept-
able tool to test new controller design in power system industries
before it can be finally implemented in industrial applications.
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7. Conclusions

This paper firstly estimates the combined effect of modelling
uncertainties, unknown parameters, and external disturbances of
SMES system via an SMSPO, which is then fully compensated by
FOSMC. Hence, considerable robustness can be realized. Besides,
more reasonable control efforts are resulted in because of the uti-
lization of real-time estimate of perturbation instead of its upper
bound adopted by SMC. Under the proposed control framework,
only dg-axis currents need to be measured thus the overall
computation/measurement costs of AFOSMC is relatively low.
Meanwhile, the utilization of fractional-order sliding surface can
considerably improve the dynamic responses. In addition, contin-
uous function tanh(.) replaces discontinuous function sgn(.), thus
the chattering effect can be largely suppressed. Three scenarios are
studied to verify and compare the feasibility and merits of AFOSMC
to that of four controllers. Furthermore, a dSpace based HIL test is
implemented to verify its feasibility under practical scenarios.

Future studies will be focused on the application of AFOSMC on
real SMES systems used in power systems to further test its effec-
tiveness in industrial experiment and including the electric vehicle
into the studied system.
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Appendix A. Structure of comparative controllers

Note that d-axis current reference i(*j and g-axis current refer-
ence i’c‘l are given from Eq. (26) and Eq. (27). The detailed structure
of other four controllers (AFOSMC has been given in Eqgs. (40)-(43))

are given as follows:
(a) PID control [15]:

. Wk . Wk d . ok
md:Kp1 (ld —ld) +K]] J(ld —ld)df-i-KD]a(ld —ld)

mq=Kpy (iq —i’;) 1Kpp J (iq —i;) dt—i—KDz% (iq —i;)

(b) IDA-PBC [20]:

13

(A1)
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« E4P,B+EqQ,, . .
mg—t [Wqu (EaPacl+EaQc , 0y, (va—va) —Rs (va—v})

ldc E£+Eé
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—(k3—1)(zd—zfz E;Q“ﬂ
dTEq
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+(ky—1) <iq—
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with
V= l Eq+ wiy (Edp;cﬁ — EqQ;c) + RT(EdP;cﬂ + EqQ;c) -R id _ EdPZcﬁ + ECIQ:C
4 ks E} +E2 E} +E2
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E3 +E§

«_ 1) wir (EqPicB — EqQic) + Rr(EaPacB + EqQac) R, (iq — EqP;cf — EqQyc
a E% + E2 a E2 + E2

. EqPB + EqQ,,
—wLt1 — k] (ld — acizc + Uq(k2 - 1)
Ej+E

(c) SMC [50]:

CLy |+ 1 R? . 2wRr. R w 2w 1.
mg =" [ld + ( -T+ wz)ld - =T, - L%(Ed —vq) — EEC‘ +5—vq +1-Eq — 6151 — ¢1tanh(5176c)}
T

Idc Clr 12 Ly Ly Ly

Lk 2
: . . R 2w 1.
mq = % [i + (L _Rr + w2> iq + szqu - (Eq —vq) + ﬂEd ———vq ++—Eq — 6252 — ¢ptanh(Sy, &c)
T

ige |1 \Clr 2 Ly 12 L Ly Ly
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i = 16) +er o =)
[5]} | dt

g (i —iq) + 2 (i — i)
(d) FOSMC [37]:

L
my = ST

CLt Lt 12 Lt

idc

igc | @ Ly
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